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Consequently, the equilibrium position is asymptotically stable relative to q,, . . . . 
qm, q1’, . . .t qn 7 7’2 uniformly with respect to initial conditions from domain (3.6). 

Note . It is easy to show analogously [S] that in the case being considered here the 

dissipative forces possess partial dissipation or are entirely absent (/ ;G 0). while in 

the set H > 0 there are no motions of the whole system as a single solid body (see 

Zhukovskii’s theorem in 143 p. 67), then in the perturbed motion /I + (1 as 1 --- co 

and, what is more, uniformly in domain (3.6;). which is proved analogously to the above. 

Consequently, the conclusion on asymptotic stability relative to Q,. . . I/,,,. cl,‘. . . 

4’ T,, II 7 uniform with respect to initial condirlons from domain (3.6). rernains in force. 

From this,in the special case when the potential energy IT has a minimum at tile equl- 

librium position, there follows an addition to 1’lteare.m 1.1 of [Sj concerning uniformity 

with respect to initial conditions from domail (3. G). 

The author thanks V. V. Rumiantsev for guidance and constant attention. 
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An approximate method is proposed for synthesizing the optimal control for a 

dynamical system in the presence of external random perturbations and mea- 

surement errors. The synthesis problem posed reduces, as is known, to solving 

a nonlinear parabolic partial differential equation (the Bellman equation) 

whose exact solutions are known only in a few cases. It is assumed that either 
the external perturbations acting on the system are sufficiently small or tile 
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measurement errors are large. Under these conditions the Bellman equation 
contains a small parameter in the leading derivative, and the solution is con- 

structed by means of an expansion with respect to the small parameter. It is 

shown that the approximate synthesis of the optimal control for perturbed sys- 

tems can be constructed in explicit form if the solution of the corresponding 

problem for the perturbation-free system is known. Estimates of the errors in 

the method are proved. Examples are given. 

1. Statement of the problem. We consider the problem of the optimal 

control of the final state of a system whose motion is described by the equation 

ds (t) I dt = A (t)s (t) -t- b (4 u) + c (t)E (t) (1.1) 

Here t is time, 5 is the n-dimensional phase coordinate vector, u .is the m-dimen- 

sional control vector, b (t, u) is a given vector-valued function, E (t) is the s -dimen- 

sional vector-valued function of random perturbations acting on the system. The mat- 

rices A (L), G (t) are given time functions and have the dimension R X n, n X s , 
respectively. It is assumed at each instant t the vector t (t) is normally distributed 
with zero mean and covariance matrix G (t) and is uncorrelated in time, i.e. is a white 

noise. The intensity of the external perturbations is assumed small, i. e, G = eG,, 

where e is a small parameter (0 4 E < 1) and G, (t) is a matrix with bounded 
elements. The constraint 

u (t, E u (1.2) 
where U is a specified bounded closed set, is imposed on tile control vector. It is assu- 
med that an exact measurement of the system’s phase vector 5 (t) is possible at any 
instant t . We are required to find a control U, depending on time and on the instant* 

aneous phase vector z’(t), which under condition (1.2) minimizes the mean of a sca- 
lar function F (x (T)) of the phase coordinates at the final instant T. 

We introduce the Bellman function S (t, r), equal to the optimal value of the func- 
tional to be minimized, under the condition that the process starts at instant t with the 

phase vector 2 (t) = 5. Then, as is well known [l], the optimal control problem posed 
reduces to the solving of the nonlinear parabolic equation 

S, - H (S,, 5, t) + l:‘,e SP (LS,,) = 0 (1.3) 

with the initial condition 

s(T, r) = F(s) (1 A) 

Here St is the partial derivative with respect to time, 

derivatives, S,, ’ 
S, is the vector of first partial 

IS the matrix of second partial derivatives of function S with respect 

to the components of vector 5, sp denotes the trace of the matrix, and, furthermore, 
we have introduced the notation 

H (S,. 5, t) = - min,u (S,, Ax + b (t, u)) 

L(t) = CG,C 
(1.5) 

where the parantheses denote the scalar product of vectors. 

For the sake of generality we assume that the process termination instant T is not 
fixed and is determined by the condition h (T, z (T)) = 0, and that the mean of the 
function F (T, r ( T)) is to be minimized at the end of the process. Here h (t, z), 
F (t, 5) are given functions and in the case of fixed T we have h = T - t. Under 
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the assumptions made the function ,_‘$ satisfies the condition 

s ft, 5) = F (t, X) for h (t, 5) = 0 (1 *st 

instead of (1.4). To be definite we take h > 0 at me start of tile process. Tile solution 
of the Cauchy problem (Il. 3) (1.6) must be constructed in the region h 3 0. T’nus, 
when the external perturbations have small intensity, the optimal control synthesis prob- 

lem is reduced to solving a Caucny problem for the nonlinear parabolic equation (I, 3) 
with a small parameter in tile leading derivative and Qith initial condition (1.4) or(l_6), 
The optimal control is determined after the function s has been found from the condi- 

tion that a minimum has been achieved in (1, S). We note that the optimal control prob- 

lem for the system (1.1). (I. 2) in the presence of large measurement errors also leads 
to exactly this same mathematical problem. 

Let the measurement process be given by the equation 

Y (Q = Q (G = (1) + rl 0) (i-7) 

Here I/ is the I-dimensional vector of measurement results. t) (t) is the vector-valued 

function of measurement errors, which, just as 6 (Q, is a white noise with covariance 
matrix B (t). Suppose that at the initial instant te the random vector z (to) is normally 

distributed with mean zt) and covariancc matrix D,.Then when the measurement rest&s 

are processed by the maximum iikelih~)~ method, because of linearity of Eqs, (1.1). (1.2) 
the a poster i or i distribution of vector z (L) is normal, while the equations describ- 
ing the variations of the mean vector z (t) and of the covariance matrix D (t) of this 

distribution have the following form PJ: 

dz I dt = Az + b + DQ’B-’ (g - Qi), 2 (to) = z. (1.8) 
dD i dt = AD + DA’ -- DQ’~-1QD + CCC’, D (to) =y. D, 

Here the explicit dependency of the functions on time has been omitted, the prime de- 

notes transposition, and the minus one power denotes the inverse matrix. Since (1.8) for 
D does not depend upon b (t, u), the matrix I) (t) can be determined in advance with- 

out dependence on the measurement results and on the control law. From now on we 

take D (r) as a known time function. Once again we consider the problem of determin- 

ing the optimal control as a function of time and of the given measurements, minimizing 
the mean of the function F (Z (T)) at the final instant 2’. We introduce the Bellman 

function s (I, z), equal to the optimal value of the functional to be minimized, under 

the condition that the process starts at instaut t and that .z (t) =: ~0 is known at this 

instant. Then the optimal control problem posed above reduces to the solving of a CaU- 

thy problem for the Bellman equation [I] 

S f -1 min,,,l: (J’:, lz i_ b) ; ‘kz Sp (DQ’B-‘QDSzz) - - (1 (1.9) 

-k=J 

If the measurement errors are large, i.e. bt-l = eB,, where 8, is a matrix with bounded 

elements, e is a small parameter, then problem (1.9) is equivalent to problem (1.3). 

(1.4). 

2, The rmrll prrrmrtrr mrthod. We proceed to construct the approxi- 

mate solution of problem (1.3). (1.6) by the small parameter method. We assume that 
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the functions H, L, F and S are sufficiently smooth and we seek the solution of prob- 

lem (1.3), (1.6) in the form of a regular expansion in powers of the small parameter 

S (t, z) = S” (t, 5) + & As’ (t, 5) +... (2.1) 

and we represent the function H from (1.5) in the form 

H (S,, 5. t) = H (Sg, 5, t) + E (VH (SxO, 5, 1), S,l @, z)) + *** (2.2) 

Here and further VH is the vector of partial derivatives of function H with respect to 
the components of vector S,. We substitute expansions (2.1). (2.2) into (1.3), (1.6) and, 
restricting ourselves to first-order terms in E, we find the equations and the initial val- 

ues for the functions Sb and Sl 

St ‘- H (Sa, z, 1) = 0, S” (t, z) = F (t, z) for h (t, x) = 0 (2.3) 

S,’ - (VH (Si’, 5, t), s,y + ‘/a sp (LS,,“) = 0 

S (t, z) = 0 for h (t, t) = 0 (2.4) 

Analogous equations can be written down also for the higher approximations. 
From relations (1.5), (2.3) it follows that H is the Hamiltonian function while S” (t, 

Z) is the Bellman function for the optimal control problem in the absence of random 

perturbations. We assume that this problem has been solved. i.e. that we have found 

the synthesis of the optimal control uU (1. 5). the function S” (t, 5) for the deter- 
ministic system. and the corresponding field of optimal trajectories 

?z==(P (1. a) (2.3) 

where (p (t. n) is a vector-valued function. a is an n-dimensional vector of arbitrary 

constanti. We assume that equality (2.5) can be solved with respect to (I in some region 
of the phase space and that we can obtain the deoendency 

a =: II’ (t. 2) (2.6) 

The first-approximation equation (2.4) is a first..order linear inhomogeneous partial 

differential equation. The system of equations determining its characteristics has the 
form 

d.r / dt = - VH (S,‘, xc, t), dS’ / dt = - l,$ Sp (LS,,yc) (2.7) 

Taking into account notation (1.5) and the known equality S,” - - p, where p is 
the adjoint variable vector for the deterministic system, we note that the first equation 

in (2.7) determines, according to the maximum principle, the optimal trajectories of 
the deterministic system. The general solution of this equation is given by (2. 5), while 

the system of first integrals is given by (2.6). Then, form (2.7), (2.5). (2.6) it follows 
that the solution of the Cauchy problem (2.4) for the function S1 is expressed as 

T (x) 

Sl(t,x) = + _ c SP IL (z) S;:” CL C)l dT (2.8) 

Here T (5) is a root of the equation h (T, 5) == 0. and the matrix SC:” should be 
taken with 

5 = cp CT9 9 (t? x>) (2.9) 

The synthesis of the optimal control in the zeroth and first approximations, u3 and u1 , 
are obtained from the conditions 
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(Go, b ft. 11’ (t, z))) = minuEu (S,C, b (t, u)) (2.10) 

(S,O i- es,‘, b (t, 24’ (t, x))) : mirbEf; (S.: -+- &Sfl, b (r, u)) 

Walities (2.1). (2.8) - (2.10) determine in explicit form the approximate solution 
of the Bellman equation and the synthesis of the optimal control for the problem with 
random perturbations if the solution of the synthesis problem for the perturbation-free 

system is known. The solution constructed is invalid where the transformation (2.5) is 

nonin~rtible. We note further that close to the surface of discontinuity of the Bellman 

function s” or of its derivatives it is necessary to add to the above-constructed solution. 

which is regular in E. a nonregular part of the solution of the boundary layer type. 

3. Error estlmrtet for the rpproxtmrte rolutfon. We examine the 
errors estimates for the approximate solution of the Cauchy problem (1.3), (1.4) for the 
case when the process terminatjon instant T is fixed and the mean of the function 

F (Z(T)) is to be minimized at the end of the process. In this case the equations and 
the initial conditions for the Bellman function, as well as the zeroth and first approxi- 

mation Eqs. (2.3). (2.4), have the form 

Here and further, for the function .u, the vector of its first derivatives, and the matrix 

of second derivatives, we have introduced the notation 

We assume that for all 1 E [t,. 7’1, II. ,s U and .r Z R,, , where R, is an n-di- 
mensional Euclidean space with norm 11 r 11 ‘. (xk2 -i- . . .;- J,,2)“r, the following 

conditions are fulfilled : 
1. Matrix f, is positive definite, 
2. The components of vector b and the elements of matrices A and 1~ are 

bounded in absolute value. 
3. Function F is continuous and bounded in absolutevalue together with its 

derivatives up to third order inclusive. 
4, Function I?$ from (3.4) is continuous and bounded in absolutevalue together 

gith its derivatives with respect to s,s up to second order inclusive. 

5. The solution of problems (3.1) - (3.3)exist and are unique, continuous and 
bounded in absolute. value together with their derivatives up to third order inCluGVe. 

The subsequent estimates are based on the following lemma, directly ensuing (after 

the substitution 1’ .: ?’ - 6) from Theorem 10 in [3]. 

Lemma. Let the continuo~ and bounded function v (t, X) serve as the solution 

of the following Cauchy problem : 

i Uij (1. 2) - “” 

i .j=l 
a.-+ + i pi (t, x) +g + r (t, 2) ?I -I- -g =-: 6 (t, .L) 

, i-1 1 

0 (T, J). ::- uf) (ix) 
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where for all t E It,, Tl, x E R, the matrix aij is positive definite, we have 

1 u. (4 J < k, (16 (t, z) 1 & kp, 1 y (t, 4 I S k,, and the coefficients %j, pi (i, 
j :z 1 1. . * 7 n) satisfy the conditions 

I aij (t, 5) I < k, (II 5 II2 + I), ISi (tv ~1 I G k, (1~ lr” + 1)“x 

where k,, . . . ,k 5 are nonnegative constants. Under these assumptions 

I u (tv 4 I < k + kz CT - 01, exp [k8 (T - t), t, < t ,( T, x E R, 

For the subsequent calculations we need t‘ne following formulas for the function ,u, 

whose validity follows from Condition 4: 

M (t, S,) = M (t, Sx’) + (VM (t, G,), S, - S,‘) (3.5) 

M (t, S,) = M (4 S,‘) + (VM (t, Sx”), S, - S,‘) + (N (4 Gz) (S, - S,‘), 
Sx - SxO) (3.6) 

VM (t, S,) = VM (t, S,‘) + N (t, G,) (S, - S,“) (3.7) 
Gi = Sx” + ei (S, - S,‘), O< ei< 1, l=i,2,3 

For convenience of writing we agree to let the letter c denote different constants not 
depending on E. 

Theorem 1. If Conditions 1 - 5 are fulfilled, then for t E [t,, ‘I’], 5 E H, 
we have 

1 s (t, z) - S” (4 4 I < C&T 11 s, (t, x) - S,’ (t, x) I< CE (3.8) 

Proof. We denote v = S - So. From (3. l), (3.2) and expansion (3.5) we find 
that u (t, 5) satisfies the eqtiation 

ut _t (As + VM, v,) + l/se SP (%,) = - ‘/2t: Sp (LS,,“) 

and the initial condition u (T, 5) = 0. The lemma’s hypotheses are fulfilled by virtue 
of Conditions 1 - 5 and, I 1/2 &Sp (I,&) I < Ce. Then the first estimate in (3.8) 
follows at once from the lemma. 

To prove the second estimate in (3.8) we differentiate (3. l), (3.2) with respect to the 

components of vector 5 and, using (3.7) , we obtain. after manipulations. the system of 
equations and the initial conditions 

@A, + (A’ + S,J’) u, + vz, [At + VM (t, &‘)I + (3.9) 

l/28 [SP wcJlx = - l/2& [SP (&X0) IX 

u,(T, z) = 0 

Wedenote r+*(t) =supla~(z, z)/a~iIforrE[T--t, Tl, sER,,and, 
having applied the lemma to (3.9), for each of the components of vector u, we find 

vi* (t) < CL6 + Cz (T - t) 2 vj* (t), 1=1,...,11 (3.10) 
jzl 

Here C,, C2 are constants independent of e. Let us subdivide the interval [t,, T] 
into N > 1 equal intervals of length d such that Nd = T -_t,, (n - 1) C& > 1, 
and let us sum the inequality (3.10). Then for t E [ T - d, T] we obtain 
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(3.11) 

Let us now consider the interval [T - 2d, 2’ - d]. Since the inequality[ u, (T- 

d, Z) 1 < Ce is fulfilled at the instant T - d , estimates of type (3. IO), (3. II) hold 

by virtue of the lemma also for t E [T - 24 T - d]. BY arguing analogously we 

establish that [_vx (t, 5) 11 < Ce for all t E [.!Q, T]. 2 E I{, . 0. E. I). 
From Theorem 1 it follows that the exact solution of the Bellman equation differs 

from the zeroth-approximation function by a quantity of the order of E. The following 

theorem is an error estimate for the first approximation. 

Theorem 2. Under Conditions 1 - :) rhe esrlmates 

1 u1 (t. J) ! < cc*, 1) u.y1 (t, 5) II < CE2 (3.12) 

hold for the function Y’ (t, 5) .-= s - so - ES’ 

Proof. Making use of expansion (3. G) amd of (3.1) - (3. 3). we tind 

Utl + (AX -i- C:ll, c,l) + ‘/* Fsp (LVss’) 2 - ‘i&I) (LS,,‘) -- 

- (iV(S,Y -- SXo). S, - S,‘). 1.l (2’. .c) 0 (3.13) 

From Conditions 4 and 5 and Theorem 1 it follows that rhe right-hand side in Eq.(3.13) 

is a quantity of the order of ?. Hence, by the lemma. we obtain the first estimate in 

(3.12). The second estimate i:: (3.12) is proved analogously to the second estimate in 

(3.8). 
We now proceed to substantiate the formulas for tile approximate synthesis (2.10) of 

the optimal control for the perturbed system. By 2’ (t, X), 2’ (1, S> we denote the 

means of the function F (5 (T)) under the condition that at the instant t the system 

is in state s,whileas ti:e control in (1.1) we apply the controls of zeroth and first appro- 

ximations, u” (t, z), u1 (t, 5) , respectively. 

Theorem 3, Tile estimates 

I s (i, x> - Z” (t, I) 1 s CE, 1 s (t, CT) - 2’ (t, sj, 1 < w (3.14) 

are valid for tile functions introduced above. 

Proof. Tile functions Z”, Z’ are (see [4] ) solutions of the following Cauchy prob- 

lems: 
&” + (As + b (t, ~2’). Z,“) -j- 1;s~ Sp (LZ,,“) :.- 0, Z” (T, z) = F (5) (3.15) 
2,’ + (AZ + b (t, u’), Z,‘) + ‘la& Sp (LZ,,‘) = 0, Z’ (T, 5) = F (5) 

1’0 shorten the writing we denote w” :Z 2” - 9, w1 -- Z’ - s” - ES’. From 

relations (3.2),(3.3), (3,1!1), with due regard to (3.4). (2.10). we find 

u;1° + (As + b (t. UO), WXC) + l:*t: sp (Lw,,“) = - l/a” sp (LS,,‘) 

U” (T, x) .= 0 
wtl + (Ax ‘- b (1. u’), wxl) + I/‘+ =ip (LW,,‘) = (3.16) 

!bf (t, sxo) -j- E (VIM (t, sxo), s,‘) - #if (t, s,” + F.S,‘) - 
A/*& Sp (I5S,,l), wl (T, 2) = 0 

From the properties of function &I (t, S,) and from Conditions 2 and 5 it follows that 

tile right-hand side of tile second problem in (3.16) is a quantity of the order of e2. 

Applying the lemma to problems (3.16). we establish that 
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I uf (4 x) I S Ce, 1 d (t, 5) 1 \( Ce2. Hence, with the aid of Theorems 1 and 

2 we obtain 

1s 09 4 - ZO(t,z)l=~S-~S”+S”-z”l~lS--S”l+l~’--oIs:~ 
IS (4 4 -Zl(t, 5)~=~S-S0-eS1-rd~~~S-S0-eS’I+I~J,( 
4 Ce* 

Q. E. 1). 

4. Tran#formatlon of rho rpproximrt@ solution. Let us reduce solu- 
tion (2.8) - (2. IO) to a form more convenient for application. We introduce a paramet- 
ric representation of the terminal surface 

t = T = PO (a), x (T) = f3 (a); h &(a), 8 (a)) = 0 (4.1) 

Here a is an ?l-dimensional vector, p,, is a scalar function, p is a vector-valued func- 

tion. These functions should satisfy the identity h z 0 in (4.1). The vector parameter 

n remains constant along the optimal trajectories of the deterministic system (see (2.5). 

(2.6) ). Then from relations (2.3), (2.6). (4.1) if follows that 

So (t, x) = F (IL (a),B (a)> = J’[B, (9 (t, x)), B (9 (tq t))I (4.2) 

From the initial condition in (2.3) it follows that on the terminal surface the derivatives 

of function S” can be represented as 

S1” - Ft f Ah,, S,” = F, + ?h, (h = 0) (4.3) 

where A = h (a) is some function of a. Substituting equality (4.3) into Eq. (2.3). we 

obtain 
Ft -+ h/r, - II (F, C Ah,, x, t) = 0 (4.4) 

If in Eq. (4.4) we substitute H from (1.5) and replace t and x from formulas (4.1). 
then it turns into a nonlinear algebraic equation for determining the function A (a). 

By X (t) we denote the fundamental matrix of the homogeneous system correspond- 

ing to (1.1). This matrix is determined by the conditions 

dX / dt = .,I (t)X, x (L,) = E (4.5) 

where E is the unit matrix, t, is a constant. As we have already noted. the vector S,” 
along the optimal trajectories of the deterministic system equals, to within sign, the 
adjoint vector. Consequently, for a fixed u the dependency of s,” on f is determined 
by the matrix X’-’ (t). Taking further into account condition (4.3), holding at the 
end of the process (t = Z’), for all t, x we obtain 

(4.6) 

S,’ = X’-l (t)q (a), q (a) = X’ (PO (a))(F, +- ld~.~), t z PO (a), 5 = p (a) 

We need to substitute the function k (a) into the right-hand side of the second equality 

in (4.6), and in the place of the arguments t, L of the functions F, h their expressions 
in (4.1). Relations (4.2), (4.4). (4.6) determine S’, S,y’ as functions of t, a. After 
this, the control 1~’ is determined from the first condition in (2.10). 

In what follows we retain the former notation S’? S1, u”. UI for the functions of 
argument 2, a . Having determined the control U3 (t, a) by the method indicated, we 
substitute it into system (1.1) with g = 0 and we write the solution of this system, 
satisfying conditions (4.1). as 
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Relation (4.7) yields a concrete form for the function cp of (2.5). defining the field of 

the optimal trajectories of the deterministic problem. Solving (4.7) with respect to n, 

we obtain the function 9 (t, 3) in (2.6). 

Having completed the construction of the zeroth approximation, we pass on to the 

first approximation. We introduce the matrix 

@(r, a) = n@i (t, a)/daj 1, i,j -= l,...,n (‘1.8) 

Then the solution of (2.8) (2.9) for the function S’ and its derivatives takes, with due 

regard to equalities (4.6) (4.8) the form 

S,l = CD-’ (t, a) S,’ 

Here (7q / &Z is the matrix of the partial derivatives of the vector q from (4.6) with 

respect to the components of vector a. Thus, the Bellman function in the variables t, u 

for the zeroth and first a~roximatio~ is defined by the equalities (2. l), (4.2) (4.9) 

and by the relations (4. I), (4-4) - (4.8) for the functions &,, 8, h, X, q, cp, a,. The 
sysnthesis of the optimal control in the zeroth and first approximations, in these same 

variables, is given by equalities (2.10) into which we must substitute Sxo, and S,’ 

from (4.6). (4.9). 

6, Sprctrl CAI(I rnd 6xrmpler, 1. Let us make the solution in Sects. 2, 4 

concrete for the case when the function 6 in (1.1) and constraint (1.2) have the form 

b (t, u) = K (r) u + c 01, H 14 1) < k (5.1) 

Here K (t) is an ( A x n )-matrix, c (1) is an n-dimensional vector-valued function, 
,Q is a positive constant bounding the vector ZJ in absolute value. From conditions(2.10). 

(2.11) for the case of (5.1) follows 

u” (t, x) ..: AK’ (1) S,” (1, z):i K’ (t) 9,’ (t. 2) jr’ 
u1 (t, z) = -kK’ (I) (S,” + eS,‘) /I K’ (S,” + eS,‘)iI -’ (5.2) 

We accept that the process termination instant T has been fixed so that h := T - t. 

In formulas (4.1) we can set 
&, (a) = T, z(T) = p(u) -= a (5.3) 

i.e. as the parameter a we take the final value of the phase vector. We consider the 

function F in (1.6) as being independent of f, i.e. F = F (5). Furthermore, we set 

ti = T in relation (4.5) so that X (T) = E. Then equalities (4.2), (4.6) (4.7) (4.9). 

with due regard to (5.1) - (5.3). take the following form : 

S” = F (a). S,” = X’-’ (t) (I (a), (I (a) - $F (a) /’ au 

t -_ 4: (t, n) = x (f) 
i 1 a ?- * x-1 (T) [c (T) --- 

T 

!5 4) 

kK (t) h” (?r) X’-’ (T) Q (a) dz 

II K’ (4 X’--’ (5) rl@) II I 1 
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The approximate solution is completely determined by formulas (2. l), (5.4). (5,2), (4.8). 

2. bet the assumptions in Sect.4 be fulfilled and, besides, let the function F @) 

be linear in 5, i.e. F (z) = (r, z), where r is a constant vector. Then from relations 

(5.4) (5.2) ensues Q (a) = ~ so (t, 0) = (r, a), S’ E 0 
u’ = Lc” = -;K’ (t)X’-1 (t) r 11 K’ (t) X’-’ (t) rll -I (5.5) 

Furthermore, from (5.4) it follows that the function cp (2, a) proves to be linear in a, so 

that a linear connection exists between z and a . Solution (5.5) shows that the optimal 

control and the functional for the perturbed problem coincide with the solution of the 

deterministic problem. This result is obvious: here the Cauchy problem (1.3) (1.4) 

admits of an exact solution S (t, z), being a linear function of the phase coordinates. 

Therefore, the last term of Eq. (1.3). containing the second derivatives and the stipulated 

random perturbations, is identically equal to zero for this solution. 

3. We consider an elementary system for which Eq. (1.1) is scalar and has the 

dxldt= u+ E, Iul<k, k>O 

Here & is a white noise with a constant small intensity eg, k and g are constants, 
a (( 1. We are required to find a control law which minimizes the mean of the func- 
tional F = x2 / 2 at a specified final instant ?. The Bellman equation (1.3) and the 

initial condition (1.4) for system (5.6), under the assumption made, take the form 

S, - k I S, I+ %egSxx = 0, S (T, z) = x2 / 2 

All the matrices and vectors here turn into scalars. For example (5.6) the functions 

entering into relations (5. l), (5.2) (5.4) take the form 

K (if = X ft) = 1, L (t) = g, c (t) = 0, s** = q (a) = a (5.81 

Using relations (5.8) from equalities (5.4) (4.8) we obtain 3 = q (t, a) = (I - 

k (t - T) sign a, Q, (t, a) = 1 (a # 0) 

~0 (t, a) = ~1 (t, a) = -k sign u, s” (t, a) = a2 / 2 (5.9) 

$fp (1, n) =,$ g (T - t) 

Equalities (5.9) are valid for a # 0. T‘ne case a = z (2’) = 0 corresponds to hitting 

onto the origin, which for a deterministic system can be realized, obviously, from the 

region 1 2 I G k (T - t). In this region the optimal control and trajectories of the de- 
terministic system are nonunique, while the Bellman function So = 0 for a = 0. Note 
that for u = 0, ) z 1 < k (T - t) , the transformation 2 = rp (1, a) is not one-to-one, 
and in the whole region 1 z 1 < k (2’ - t) we have the identity a = 0. From definition 

(4.8) it follows formally that (D-1 - 0, and then from formula (4.9) we find $1 (t, a) ~0 
at a = 0. Passing to the variables t and x, we obtain, in accordance with (5.9) and 
with due regard to the remarks made, the approximate solution ,ro + err of problem 
(5.7) in the form 

2 ($9 21 = ‘/a ii 2 1 + 8 tt - T)Ja + ‘kEg (T - f), 1 2 1 > k (T - t), a # 0 
S (t, 4 = 0, I z I < k (2’ - t), a = 0 (t 5 T) (530) 

The approximate solution (5.10) has discontinuities on the staight lines j ~1 = ,$ (T _ t); 
in order to obtain a smooth solution we need to add to (5.10) a solution of boundary 
layer type close to these lines. 

The example considered relates to the very few cases when we can obtain an exact 
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solution of the Bellman equation, which we can then compare with the approximate solu- 
tion (S.10). This is of interest since for the given example the hypotheses of the theo- 
terns in Sect.3 are not ftifilled. and the question of the error estimate for ~lutjon~s.~~) 
remains open. We remark that the solution of problem (5.7) is an even function of z, 
being restricted, therefore, to the region 2 & 0. Following [53, we obtain the exact solu- 
tion of problem (5.7) in the form 

OD 

P (l!X * Y) = JT2nrflT _ t) =P (- 
12 - 6” - l) k f YY 

2Eg (T - t) 1 
(5.11) 

9(Y) = & (i - e-2ay) - _..KJ$_ , 
k 

a=____=: const, XT,0 
% 

By means of the su~titution x = u + k f T - 4 and of certain man~p~lati~s, solution 
(5.11) is brought to the form 

ccl 

s (t* 2) = 
aa + eg (T - f) 

2 
(5.12) 

a=z-k(T-tt), z&O 

Let us now obtain an asymptotic representation for solution (5.12) as e .-+ 0. To do 
this we evaluate the integrals occurring in (5,12) by Laplace’s method f6] in turn for 
the various ranges of x, 1. Finally, we obtain 

s (‘, 2) = -+I x -i_ k (t - 2’))s -i_ */peg (2’ - I) + al, z>k(T---) 

22 
s (t, z) = %eg (T - t) + -&$- + a2. z = k (T - t) (5.13) 

s (t, 5) = $- + aa, O<z<k(T----) 

Here the quantities a,, a,, as tend to zero as E + 0 and for fixed x, f , faster than any 
power of E. Taking into account the property that function S is even and comparing 
the approximate solution (5.10) with the asymptotic representation (5.13) of the exact 
solution, we convince ourselves that they coincide to within quantities of the order of 
es everywhere except on the straight lines .\ x \ = k (9’ - t), on which the approximate 
solution (5.10) has discontinuities. The example shows the feasibility of applying the 
small parameter method also for these cases when the hypotheses of the theorems in 
Sect. 3 are not fulfilled. 

(The small parameter method for the Bellman equation, worked out above, was pro- 
posed earlier in p], Another approach to analogous problems is contained in the recen- 
tly published paper [8] ). 

The authors are deeply grateful to G. 1. Eskin for valuable discussions, 



Approximate synthesla method for cptml control of a system 791 

1. 

‘2. 

3. 

4. 
5. 

6. 

7. 

8. 

BIBLIOGRAPHY 

Fel’dbsum, A. A., Fundamentals of the Theory of Optimal Automatic Sys- 

tems. Moscow, Fizmatglz. 1963. 
Kalman. R. E. and Bucy, R.S., New results in linear filtering and predic- 

tion theory. Trans. ASME, Ser. D , J. Basic Engng. , Vol. 83. Nl, 1961. 

Il’in, A. M., Kalashnikov, A.S. and Oleinik, 0. A., Second-order 

linear parabolic equations. Uspekhi Mat. Nauk. Vol. 17, No3, 1962. 

Dynkin. E. B., Markov Processes. Moscow, Fi zmatgi z. 1963. 

Moshkov, E. M., On the precision of optimal control of the final state. PMM 

Vol34. Nn3, 1970. 
Lavrent’ev, M. A. and Shabat, B. V., Methods in the Theory of Func- 

tions of a Complex Variable. Moscow, Fizmatgiz. 1958. 

Kolmanovskii, V. B. and Chernous’ko. F. L., Optimal control prob- 

lem under incomplete information. hoc. Winter School on Mathematical 

Programing and Related Questions. Moscow, Nol, 1971. 

Fleming, W. H., Stochastic control for small noise intensities SIAM, J. Control. 

Vol 9, Ng3, 1971. 
Translated by N. H. C, 

ONTHBTHEORYOFTHBSLIPPING STATE 

IN DYNAMICAL SYSTEMS WITH COLLISIONS 

PMM Vol.36, Nn5, 1972, pp. 840-850 
Iu. S. FEDOSENKO and M. I. FEIGIN 

(Gor’kii) 

(Received May 23, 1971) 

For a wide class of systems with collisions we propose an approximate method 
for computing the slipping states, characterized by the same degree of com- 
pleteness and labor-consumption as the known methods for computing motions 

of simple types. For the case when the relative acceleration of the colliding 

bodies varies by a linear law on the final segment of the slipping state. we have 

obtained an analytic expression for the state’s duration factor as a function of 

the velocity recovery factor under impact. 
Examples of the calculation of concrete models are considered. A compa- 

rison with results obtained by exact methods shows that the error does not ex- 

ceed a few percents even for the first approximation. By a slipping state in a 
system with collisions we mean a motion accompanied on a finite time inter- 
val by an infinite sequence of instantaneous shock interactions between two 
fixed elements of the system. For a wide class of systems being considered the 
problem has been solved in [l - 31 of determining in phase space the exact 
boundaries of the slipping state regions and of delineating the existence regions 
of periodic motions with a slipping state segment in parameter space. However, 
it is not advisable to recommend the use of the iterative procedure used in 


